Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Slowdown of atomic diffusion in liquid gallium-indium alloy under different nanoconfinements

Identifieur interne : 000032 ( Russie/Analysis ); précédent : 000031; suivant : 000033

Slowdown of atomic diffusion in liquid gallium-indium alloy under different nanoconfinements

Auteurs : RBID : Pascal:12-0203896

Descripteurs français

English descriptors

Abstract

NMR studies were carried out on three isotopes, 71Ga, 69Ga, and 115In, in liquid gallium-indium (Ga-In) alloy embedded into porous glasses with 200 and 5 nm pore sizes at two magnetic fields, 9.4 and 17.6 T. Spin-lattice relaxation and the Knight shift were found to depend on pore size. For porous glass with 5 nm pores the relaxation rate was field-dependent which evidenced that the extreme narrowing limit was no longer valid. Magnetization recovery data were used to evaluate the correlation times of atomic mobility and the quadrupole constants under nanoconfinement.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0203896

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Slowdown of atomic diffusion in liquid gallium-indium alloy under different nanoconfinements</title>
<author>
<name sortKey="Podorozhkin, D Yu" uniqKey="Podorozhkin D">D. Yu. Podorozhkin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, St. Petersburg State University, St. Petersburg</s1>
<s2>Petrodvorets 198504</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Petrodvorets 198504</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CHENG TIEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, National Cheng Kung University</s1>
<s2>Tainan 70101</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Tainan 70101</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centerfor Micro/Nano Science of Technology, National Cheng Kung University</s1>
<s2>Tainan 70101</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Tainan 70101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Charnaya, E V" uniqKey="Charnaya E">E. V. Charnaya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, St. Petersburg State University, St. Petersburg</s1>
<s2>Petrodvorets 198504</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Petrodvorets 198504</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, National Cheng Kung University</s1>
<s2>Tainan 70101</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Tainan 70101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, M K" uniqKey="Lee M">M. K. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, National Cheng Kung University</s1>
<s2>Tainan 70101</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Tainan 70101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chang, L J" uniqKey="Chang L">L. J. Chang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, National Cheng Kung University</s1>
<s2>Tainan 70101</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Tainan 70101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michel, D" uniqKey="Michel D">D. Michel</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Faculty of Physics and Geosciences, University of Leipzig</s1>
<s2>Leipzig 04103</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Haase, J" uniqKey="Haase J">J. Haase</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Faculty of Physics and Geosciences, University of Leipzig</s1>
<s2>Leipzig 04103</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kumzerov, Yu A" uniqKey="Kumzerov Y">Yu. A. Kumzerov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>A.F.Ioffe Physico Technical Institute RAS</s1>
<s2>St. Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A.F.Ioffe Physico Technical Institute RAS</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0203896</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0203896 INIST</idno>
<idno type="RBID">Pascal:12-0203896</idno>
<idno type="wicri:Area/Main/Corpus">001E23</idno>
<idno type="wicri:Area/Main/Repository">001547</idno>
<idno type="wicri:Area/Russie/Extraction">000032</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4526</idno>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<title level="j" type="main">Physica. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Confinement</term>
<term>Correlation time</term>
<term>Diffusion</term>
<term>Gallium alloys</term>
<term>Indium alloys</term>
<term>Isotopic species</term>
<term>Knight shift</term>
<term>Liquid alloys</term>
<term>Magnetic field effects</term>
<term>Magnetization</term>
<term>Nanometer scale</term>
<term>Nuclear magnetic resonance</term>
<term>Pore size</term>
<term>Quadrupole interactions</term>
<term>Recovery (properties)</term>
<term>Spin-lattice relaxation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Diffusion(transport)</term>
<term>Résonance magnétique nucléaire</term>
<term>Espèce isotopique</term>
<term>Dimension pore</term>
<term>Effet champ magnétique</term>
<term>Relaxation spin réseau</term>
<term>Déplacement Knight</term>
<term>Aimantation</term>
<term>Restauration (propriété)</term>
<term>Temps corrélation</term>
<term>Confinement</term>
<term>Echelle nanométrique</term>
<term>Interaction quadripolaire</term>
<term>Alliage liquide</term>
<term>Gallium alliage</term>
<term>Indium alliage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NMR studies were carried out on three isotopes,
<sup>71</sup>
Ga,
<sup>69</sup>
Ga, and
<sup>115</sup>
In, in liquid gallium-indium (Ga-In) alloy embedded into porous glasses with 200 and 5 nm pore sizes at two magnetic fields, 9.4 and 17.6 T. Spin-lattice relaxation and the Knight shift were found to depend on pore size. For porous glass with 5 nm pores the relaxation rate was field-dependent which evidenced that the extreme narrowing limit was no longer valid. Magnetization recovery data were used to evaluate the correlation times of atomic mobility and the quadrupole constants under nanoconfinement.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>407</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Slowdown of atomic diffusion in liquid gallium-indium alloy under different nanoconfinements</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PODOROZHKIN (D. Yu.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHENG TIEN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHARNAYA (E. V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LEE (M. K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CHANG (L. J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MICHEL (D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HAASE (J.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KUMZEROV (Yu. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Physics, St. Petersburg State University, St. Petersburg</s1>
<s2>Petrodvorets 198504</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, National Cheng Kung University</s1>
<s2>Tainan 70101</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centerfor Micro/Nano Science of Technology, National Cheng Kung University</s1>
<s2>Tainan 70101</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Faculty of Physics and Geosciences, University of Leipzig</s1>
<s2>Leipzig 04103</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>A.F.Ioffe Physico Technical Institute RAS</s1>
<s2>St. Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>2063-2067</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000506914100150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0203896</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>NMR studies were carried out on three isotopes,
<sup>71</sup>
Ga,
<sup>69</sup>
Ga, and
<sup>115</sup>
In, in liquid gallium-indium (Ga-In) alloy embedded into porous glasses with 200 and 5 nm pore sizes at two magnetic fields, 9.4 and 17.6 T. Spin-lattice relaxation and the Knight shift were found to depend on pore size. For porous glass with 5 nm pores the relaxation rate was field-dependent which evidenced that the extreme narrowing limit was no longer valid. Magnetization recovery data were used to evaluate the correlation times of atomic mobility and the quadrupole constants under nanoconfinement.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70F60</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60F10C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Résonance magnétique nucléaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nuclear magnetic resonance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Espèce isotopique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Isotopic species</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Especie isotópica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Dimension pore</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Pore size</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Dimensión poro</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Relaxation spin réseau</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Spin-lattice relaxation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Déplacement Knight</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Knight shift</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Restauration (propriété)</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Recovery (properties)</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Restauración (propiedad)</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Temps corrélation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Correlation time</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Confinement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Confinement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Echelle nanométrique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Nanometer scale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Interaction quadripolaire</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quadrupole interactions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Alliage liquide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Liquid alloys</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium alliage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium alloys</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium alliage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium alloys</s0>
<s5>17</s5>
</fC03>
<fN21>
<s1>156</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000032 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000032 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0203896
   |texte=   Slowdown of atomic diffusion in liquid gallium-indium alloy under different nanoconfinements
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024